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The results recently obtained by van Enter, Fernandez, and Sokal on non- 
Gibbsianness of the measure v = Tb#t~,h arising from the application of a single 
decimation transformation Tb, with spacing b, to the Gibbs measure #l~,h of the 
Ising model, for suitably chosen large inverse temperature fl and nonzero exter- 
nal field h, are critically analyzed. In particular, we show that if, keeping fixed 
the same values of fl, h, and b, one iterates a sufficiently large number of times 
n the transformation Tb, one obtains a new measure v'=(Tb)n#r~,h which is 
Gibbsian and moreover very weakly coupled. 
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1. I N T R O D U C T I O N  A N D  R E S U L T S  

This note is mot ivated  by a series of discussions with many  colleagues and, 

in particular,  with G i o v a n n i  Gal lavot t i  and  Joel Lebowitz, abou t  the 

relationships between: (i) some recent results by van Enter,  Fernandez ,  and  
Sokal (EFS)  concerning non -Gibbs i annes s  of some measures Tv obta ined  
by applying a renormal iza t ion  group t ransformat ion  T to a G ibbs i an  

measure v, (2) and ( i i ) s o m e  recent results obta ined  by the present 
authors(6 8) on the appl icat ion of finite-size condit ions,  of the form 

originally in t roduced in refs. 9 and  10, to the study of equi l ibr ium and  
nonequ i l ib r ium properties of lattice spin systems near  a f irs t-order phase 

transit ion.  
Joel Lebowitz suggested to us that  we write a note  to clarify these 

relat ionships by an example. 
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We will consider a simple case: the Ising model in dimensions d>~ 3 at 
large inverse temperature fi and nonzero external magnetic field h; we will 
denote by #~,h the associated unique Gibbs state. 

In this case EFS prove that the decimation transformation Tb, on a 
scale b, gives rise, for suitable values of fl and h, depending on b, to a non- 
Gibbsian distribution. 

We prove here that, as an immediate consequence of the results in refs. 
9, 10, and 6, if, for exactly the same thermodynamic parameters fl and h we 
apply the decimation transformation Tb, on any sufficiently large scale b', 
we obtain a measure which not only is Gibbsian, but is also weakly 
coupled (high temperature). In particular one can take b ' =  b n for all suf- 
ficiently large n; namely, one can iterate the EFS transformation to come 
back, in this way, to the set of Gibbs measures. Moreover, as a corollary, 
we obtain that Tb, Pp, h converges, at the level of the interaction, for n 
tending to infinity, to the trivial fixed point corresponding to a free system 
with the appropriate magnetization. 

Let us now give some definitions. 
The configuration space of the system is /2 = { -  t, 1 } zd. The formal 

Hamiltonian is 

O(o=):  1 ~ (T i (T j__ lh~(~ i  ( I )  
(i,.,/) i 

where (i,  j )  stands for a pair of nearest neighbors in Z a and h > 0. 
We use f2A = { - 1, 1 }A to denote the configuration space in A c Z J. 
Consider a finite region A in Z a (in this case we write A c c  Z a) and 

an arbitrary boundary condition r outside A (r e s The energy of a 
configuration a in A is given by 

1 ( ) , Z Oxo -lY  h+ S (2) 
x , y ~ A : l x - y l = l  x~A yeA:Ix yl=l 

The finite-volume Gibbs measure in A, with r boundary conditions, 
has the expression 

# ~ (a) = exp [ - flH~A (a) ]/normalization 

Notice that EFS use a different notation: they call magnetic field and 
denote by h our quantity flh. 

The Dobrushin-Lanford-Ruelle (DLR) theory of Gibbs measures is 
based on the conditional probabilities ~z A for the behavior of the system in 
a finite box A c c  Z d subject to a specific configuration in the complement 
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of A. According to ref. 2, a probability measure whose conditional 
probabilities for finite subsets A c c  Zd: (7~A) A c c Z  d satisfy 

lim sup 17~Af(O.)1)--7~Af(092)[ = 0  (3) 
A ' " Z  d ~1,~2ff~2: (~Ol)A'= (O92)A' 

(namely the conditional expectations in A of any cylindrical function f 
corresponding to different boundary conditions co1, c02, coinciding in 
A'D A, tend to coincide as A' tends to Z d) is called quasilocal. 

A quasilocal probability measure on (2 satisfying also a so-called non- 
nullity condition, i.e., a sort of absence of hard-core exclusion, is called 
Gibbsian (see ref. 2 for more details). 

In ref. 2 it is shown that the above notion of Gibbsianness of a 
measure is equivalent to the usual notion based on absolute summability 
properties of the interaction which gives sense to DLR equations. 

The following theorem is proved in ref. 2 (see Theorem 4.7 therein), 

Theorem 1. For each d>~3 and b>~2 there is a fi and a function 
/~(fl) with /~(fl) > 0 if fi > fi such that for all fi > fi and h </~ the following 
is true: Let # be a Gibbs measure for the d-dimensional Ising model 
described by the Hamiltonian (1) with inverse temperature fl and magnetic 
field h. Then the renormalized measure Tbp, arising from a decimation 
transformation with spacing b, is not consistent with any quasilocal 
specification. In particular it is not the Gibbs measure for any uniformly 
convergent interaction. 

We refer to Definitions 2.1 2.4 in ref. 2 for precise definitions concerning 
interactions. 

Let us now state our result. 

Theorem 2. For each d>~3 and h > 0  there is a b0 and a rio such 
that for all fi > flo and b ' >  bo the following is true: Let # be the Gibbs 
measure for the d-dimensional Ising model described by the Hamiltonian 
(1) with inverse temperature fl and magnetic field h. Then the renormalized 
measure Tb, g arising from a decimation transformation with spacing b' is 
Gibbsian; moreover, the corresponding interaction is absolutely summable 
and the sum of all but the one-body terms tends to zero (in the norm N~ 
defined in ref. 2) as b' tends to infinity. 

2. PROOF OF T H E O R E M  2 

We will use definitions and notation of ref. 6, to which we refer for 
details. 
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Let us first recall the notion of finite-volume strong mixing condition 
(in its simplest form) introduced in ref. 6. 

We say that the Gibbs measures #~ in A, with boundary condition z 
outside A, satisfy the strong mixing condition in A, with parameters C > 0, 
7 > 0, and denote it by SMC(A, C, 7), if, for all x, y E A, 

sup I~(~)--~A(~x)~(~)l ~<Cexp(-y Ix -y [ )  (4) 
z ~ g~AC 

In ref. 6 we have shown that, given C, 7, if SMC(., C, ~,) is satisfied for a 
sufficiently large cube QL(C, 7) of side L, then there are C' > 0, 7' > 0 such 
that SMC(A, C', ~') is satisfied for all arbitrarily large regions A which are 
multiples of the basic cube QL; where, given the odd integer L, a set A is 
said to be a multiple of the basic cube QL(O) (of edge L centered at the 
origin) 

QL(O)={yEZd;]yi[<~-~--,i=l ..... d} 

if it is a union of translated cubes QL(x) - QL(O) + x, x e Z a, with disjoint 
interior, 

A= U QL(LY) 
y 6 Y  

for some Y c  Z d. 
This property, namely the propagation to all larger scales of a finite- 

volume strong mixing condition, is called effectiveness. 

Remark. Notice that in ref. 6 different notions of strong mixing were 
defined in a much more general setup. The possibility of using the par- 
ticularly simple form given in (4) is a consequence of the peculiarities of the 
standard Ising model. In ref. 6 this condition was called SMT(A, 1, C, 7). 

It was shown in ref. 6 that the following proposition holds true: 

Proposition 1. For all d>~2, h > 0 ,  there exists Lo=Lo(d,h) and 
flo = flo(d, h, L) such that SMC(QL, C, 7) holds for all L >1 Lo(d, h) provided 
/3 >/~0(d, h, L). 

Proof. Let us give here a proof of the above statement less sketchy 
than the one given in Section 5 of ref. 6. 

Consider a cube A = QL in Z a. 
By F K G  inequalities (3'4) and by taking the limit fl--+ ~ of #5 i, where 

- 1  is the configuration identically equal to - 1 ,  it follows that, if the 
ground-state configuration of HA!(a) with minus boundary conditions is 
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identically equal to + 1 for all x e A, then the same holds for the ground- 
state configurations of H~A(a) with arbitrary boundary conditions r. 

We want now to prove that if L > 2d/h 

minH~!(a)=HA!(+l); HA!(a)>Hs!(+I_) Va# +1_ (5) 

namely that the configuration with all spins + 1 in A is the unique ground 
state for - 1  boundary conditions. 

Indeed, for every configuration a e ~'~A consider the union C(a) of all 
the closed unit cubes centered at each site x cA:  ax = +1. Consider, also, 
the union D(a) of the closed unit cubes centered at sites x~zd: ax= --1 
(we recall that we set ax-- - 1 ,  Vx ~ Zd\A)  and call D * =  D*(a) the unique 
infinite connected component of D(a). The union C(a) splits into maximal 
connected components C1,..., Ck. Among C~,..., Ck we select the subset 
C~ ..... Cj of components touching D*. We call them outer components and 
denote by 7~,..., 7i their exterior boundaries (i.e., ~i= C~c~ D*). We call ]yi] 
the measure of their boundaries 7; and ]0(7/)[ the measure (cardinality) of 
the interior 0(?~) of ?,~, namely the set of points that are separated from the 
boundary ~A by 7;. 

It is easy to prove the isoperimetric estimate 

2 10(Ti)l ~< 2d] (6) 
i 

(see, for instance, Theorem 1.1 in ref. 11). 
From (1.6) we get, for every ae[2A, 

H~!(a)-H~(-l_)>~ - h ~  10(7;)[ + ~  [7;k 
i i 

1 >~ - h  ~. 10(7i)1 + 2d 10(Ti)[ (7) 
i 

From (1.7) we get, for L>2d/h, 

HA~-(a)--HA~-(--I_)> -hU+2dLd-I=HA~(+I_)-H~(-1) (8) 

and the first equality in (5) is proven; the uniqueness of the minimum also 
follows from (7). 

As we already said, from (5) we also get that Yr, + 1 is the unique 
minimum for the energy. 

Now, for every L > 2d/h, C > 0, 7 > 0 given, if we choose a sufficiently 
large flh, it is easy to get the condition SMC(QL, C, 7) [simply because 

822/72/5-6-21 
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p~(ax = -1  for some x ~ A ) ~  0 as p ~ o% so that the Gibbs measure in A 
is, for every r, a small perturbation of a f-measure concentrated on the 
unique ground state + 1 ]. 

Now, from the effectiveness of SMC(QL, C, 7) for L large enough, 
which has been proven in ref. 6, we are able to deduce properties of the 
renormalized interaction obtained by applying a block decimation trans- 
formation on a scale L. Before stating the result in Proposition 2 below, we 
need some more definitions. 

Let b=2L and call A(x) the cubic block QL(bx) and ~x~f2A(x~ the 
corresponding spin configuration. We call A the set of all the A(x)'s and we 
identify it with the subset of Z a given by the union of the cubes A(X). 

For ~ef2A let H]r)(~) be the (formal) renormalized Hamiltonian 
obtained by integrating out the spins in Za\A. To be more precise, consider 
a big cube z/--=-QL(0) centered at the origin with side L=(2p+I)L ,  p 
integer. Choose free (empty) boundary conditions outside /l. For every 
a ~ ~ 03 call 

0 ~  = o-~ c~ff; r / z / =  a f t \  A 

Let H(a~)=H(~A, rl~) be given by (1.1) and consider the renormalized 
Hamiltonian H ] ) ( ~ )  given by 

exp[ - H]) (e~) ]  = 2 exp[ - /3H(c~,  r/~)] 

This corresponds to applying to the Gibbs measure #~ a kind of decima- 
tion in ~ \ A ,  that is, to construct the relativization of #~ to Dj~A.  Call #]) 
the renormalized measure on f 2 ~ A  obtained in this way: 

#~) = exp [ - H ])(eA)] 
ZA ' ZA=~exp[ - -H]~(~ ) ]=~exp[ - -H(a~) ]  

~3 a3  

One can repeat the same construction for any boundary condition z e f2A~ 
and get, in this way, the renormalized measure/~)'~. 

P r o p o s i t i o n  2. 

(i) The result 

For L large enough we have: 

lim /~(gt,~ = #(r) 
zi~Z a A 

holds independently of (the sequence of) boundary conditions r. 

(ii) #(r) is Gibbsian; there exists a corresponding interaction 
(~V)V=A (see ref. 2) which is absolutely summable. 
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(iii) The following condition is satisfied: 

S Ll  ll =o(L) 
v~ A(O): IVt> 1 

Proof. Take any finite cube A with side/5 = (2p + 1 )L and r boundary 
conditions outside A. It is sufficient to notice that A\A is a multiple of QL; 
so, by Proposition 1, for L sufficiently large the Gibbs measure /~]~A 
satisfies SMC(A, C', 7') for suitable C', 7', uniformly in A. The same is 
true for any (not necessarily cubic) region V multiple of QL (see ref. 6 for 
more details). 

Parts (i) and (ii) immediately follow from effectiveness. Indeed, let 
#(r)(~x1%) be the conditional probability, with respect to the measure #(r) 
on ~A, of the configuration ~x in A(x) given % in A(y). Gibbsianness 
follows from nonnullity and quasilocality, which, in turn, follows from 

[/-t(~)(ctx I~y) - ]2(r)(~Xx)l ~ C" exp( - ? "  Ix - Yl) (9) 

for suitable C', ~", uniformly in A, r, ~x, C~y. 
Condition (9) is a direct consequence of the strong mixing condition 

valid uniformly in A (effectiveness). 
To get part (iii) we need more detailed estimates; it easily follows from 

the arguments developed in refs. 9 and 10, based on the cluster expansion, 
from Proposition 1 and Appendix 2 in ref. 6. 

Let us now conclude the proof of Theorem 2. Let us use 
cox E { -  1, + 1 } to denote the value of the original spin variable abx at the 
center bx of the cube A(x). We set c~x= (cox, ~x); ~x~ { - 1 ,  + 1} At~)\bx is 
the restriction of c~ to A(x)\bx. 

Let B = {y = bx, x ~ Z d} be the sublattice of Z d of spacing b. Consider 
the measure v = Tb/~ obtained by applying the usual decimation transfor- 
mation in Zd \B  (relativization to s B of the original Gibbs measure # in 

~2z~). 
We have 

v(coxlcoy)~t.t(coxlcoy)=~f.t.t(r)(~x, coxlcoy)=-~#(~x, coxlcoy) (10) 
~x ~x 

On the other hand, 

,"(~x Icoy) = Z E~(~x I~.~, coo - , " ( ~  I~*, co*)3 
@ 

X ]~(~y [ COy)~- [A(~x I ~y~, (J)~) (11) 

* denote a reference configuration (e.g., equal to all + 1 in Ay). where ~*, COy 
From (9)-(11) we get the quasilocality condition (3); the nonnullity 

condition is trivially satisfied, so that we get the desired Gibbs property 
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for v. Absolute summability of the renormalized interaction immediately 
follows from the arguments of refs. 9 and 10 together with the estimate of 
the norm of the more-than-one-body interaction, which estimate vanishes 
as L increases to infinity. This concludes the proof of Theorem 2. 

3. C O N C L U S I O N S  

As it was noticed in ref. 2, the nonexistence of the renormalized inter- 
action is a consequence of the presence of a first-order phase transition for 
the original model in Zd\B for particular values of (cOx)x~8 and suitable h 
and fl; for example, cox = -1 ,  Vx, and uniform positive h, exponentially in 
fl near to the value h*(b), which is needed to compensate, in Zd\B, the 
effect of the - l's in B and to give rise to a degeneracy in the ground state 
in Zd \B  (see also ref. 5). 

It seems clear, from the above analysis, that this pathology comes 
from the fact that, o n  a too short spatial scale b (with respect to the 
thermodynamic parameters and mainly the magnetic field h), the system is 
reminiscent of the existence of a phase transition for h = 0. 

One needs to analyze the system on a large enough scale to put in 
evidence the uniqueness of the phase and the absence of long-range order. 
This scale, on which bulk effects become dominant with respect to surface 
effects, corresponds to the formation of a critical droplet of the stable 
phase; in other words, it is necessary to go to distances of this order to be 
sure that the boundary conditions have been screened out. The fact that on 
shorter distances the system is sensible to the boundary conditions and 
ordered is somehow related to the phenomenon of metastability taking 
place near a first-order phase transition. 

The general philosophy suggested by the outcome of our Theorem 2 is 
that, when applying a renormalization group transformation, the system 
behaves as if it was weakly coupled, provided the scale of the transfor- 
mation is chosen, depending on the thermodynamic parameters, in such a 
way that our strong mixing condition becomes effective; however, it is 
important to stress that the relevant length scale near a low-temperature 
coexistence line is not the correlation length of the unique pure phase, but, 
rather, the length of the critical droplet of the stable phase inside the 
metastable one. 

Finally, we want to underline the fact that Theorem 2 is based on a 
finite-size condition related to a particularly simple shape: a cube. 

As we discussed in ref. 6, an effective condition fi la Dobrushin and 
Shlosman, implying their complete analyticity (see, for instance, ref. 1), 
could not be verified in the region of thermodynamic parameters that we 
are considering here. Indeed the Dobrushin-Shlosman finite-size condition 



Pathologies of RG Transformations 1177 

involves the consideration of arbitrary shapes; it is clear that to exploit the 
presence of a positive magnetic field as a mechanism of screening we need, 
say, a plurirectangle with sufficiently large minimal edge. For not sufficiently 
"fat" and regular regions (for instance, pathological regions with many 
holes in the bulk), it is conceivable not only that a finite-size condition 
coming from the screening effect of h does not hold but, also, for special 
values of h and fl, the Dobrushin-Shlosman complete analyticity can even 
fail. This is actually what EFS prove, in some cases, as a direct conse- 
quence of their methods to show non-Gibbsianness of some renormalized 
measures. 

At the same time the equivalent of complete analyticity, not stated for 
all regions, but, rather, for arbitrarily large but suffieiently regular domains, 
directly follows from refs. 9 and 10 and the above-described finite-size 
condition on a suitable cube. 
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